Diophantine Approximation on Veech

نویسندگان

  • Pascal Hubert
  • Thomas A. Schmidt
  • THOMAS A. SCHMIDT
چکیده

— We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments. Résumé (Approximation diophantienne sur les surfaces de Veech) Nous montrons que les fractions continues generalisées Z de Y. Cheung s’adaptent pour exprimer l’approximation par vecteurs de connexion de selles sur n’importe quelle surface de translation compacte. C’est-à-dire, nous démontrons la finitude de la constant de Minkowski pour chaque surface de translation compacte. De plus, pour une surface de Veech en forme standard, nous montrons que chaque composant de n’importe quel vecteur de connexion de selle domine, dans un sens approprié, ses conjugués. Les fractions continues de connexions de selle permettent de reconnâıtre certaines directions transcendantales par leur développement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Approximation on Veech Surfaces

We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates. The sad...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Topological Dynamics

1. Dynamical embedding 1.1. Uniformly distributed sequence generators 1.2. Weak mixing relative to a partition 1.3. Construction of P-mixing transformations 1.4. Well distributed sequences 1.5. A theorem in Diophantine approximation 1.6. Disjointness in topological dynamics 1.7. Proof of Theorem 1.5.1 1.8. Quasiregular points and generic points 1.9. Normal sequences and collectives 1.10. Disjoi...

متن کامل

Ergodic Theory on Homogeneous Spaces and Metric Number Theory

Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...

متن کامل

Diophantine Properties of Measures and Homogeneous Dynamics

This is a survey of the so-called “quantitative nondivergence” approach to metric Diophantine approximation developed approximately 10 years ago in my collaboration with Margulis. The goal of this paper is to place the theory of approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011